Chapter 2

Singular Integrals.

2.1 Marcinkiewicz Interpolation Theorem.

Interpolation theorems play a very important role in Harmonic Analysis.
An example is the following theorem. Let (X,3, ) be a measure space.
i need not be a finite measure. A bounded map 7' : L, — L, satisfies
T fll, < C| fllp for some C' < co. By Tchebychev’s inequality
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This type of inequality, known as weak type inequality can hold even when
T is not bounded.

Theorem 2.1 (Marcinkiewicz). Let T be a sublinear map defiened on L,NL,
that satisfies weak type inequlities

e (@) = < DU (21)

for v = 1,2 where 1 < p; < py < 0o. Then for p1 < p < po, there are
constants C, such that

ITFllp < Coll I (2.2)

Note that T" need not be linear. It need only satisfy for each x
[(T(f +9) (@) < [(Tf)(@)] + [(Tg)(x)] (2.3)
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Proof. Let p € (p1, p2) be fixed. For any function f € L, and for any positive
number a we deine f, = fxq|fj<a} and f* = fxqfj>a}. Clearly f, € Ly, and
fre L,

e |(T) )] > €
< ple < (TF)@)] 2 5+l (7)) =
Clzpl

022p2 /
< f@Pdu+ B [ )
P2 ) f@)|<a P )\ f@)>a

Choose a = £. Multiply by p’~! and integrate over [0, c0). Denote by o(d7)
the distribution of 7 = |f(2)|.
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00 P2y pp—1
< [Te2i (@) dp de
42
0 |f(2)[<e
> Cy2vp et
A BT
z)|>
© (,9pP2q pp—1
:/ C2p 07 / 2 g (dr) dl
0 £p2 <t
Oy 2P1p p~1
—I—/ u/ Po(dr) dl
>t
2p2 p—1
/T”/ ¢ ————dlo(dr)
1y pp—1
/ / 01 p AZPE qo(dr)

:O(pl)p%pv 01)02)/Tp0-(d7—)
]

There is a slight variation of the argument that allows ps to be infinite
provided 7' is bounded on L. If we assume the bound ||(7f)|loc < Co|lf|o
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we obtain the estimate

ple = |Tf(@)] = (1+ Co)l] < pla = |Tf (2)] = Col] + ple : T fu(x)] = ]
= plz [T f(2)] > 1]

Cl €

< oo () [P dp
) pa)=e

= % ) ™o (dT)

multiply by pf’~! and integrate as before.

A different interpolation theorem for linear maps T is the following

Theorem 2.2 (Riesz-Thorin). If a linear map T is bounded from L, into
L, with a bound C; for ¢ = 1,2 then for p1 < p < po it is bounded from L,
into L, with a bound C, that can be taken to be

C,=CiCy™" (2.4)
where t 1s determined by

1 t  1—t
=

P b P2
Proof. The proof uses methods from the theory of functions of a complex
variable. The starting point is the maximum modulus principle. Let us
assume that u(z) is analytic in the open strip a < Rez < b and bounded
and continuous in the closed strip a < Re z < b. Let M (z) be the maximum
modulus of the function on the line Rez = x. Then log M(z) is a convex
function of . This is not hard to see. Clearly the maximum principle dictates
that

(2.5)

M (z) < max[M(a), M(D)]

If one is worried about the maximum being attained, one can always mutiply
by e** and let € go to 0. Replacing u(z) by u(z)e’* yields the inequality

M (x)e™ < max[M(a)e™, M(b)e™]

Pick ¢ so that M(a)e™ = M(b)e®, i.e t = ;- log %((Zg We get

M(z) < M(a)ie M(b)i
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Since a'g:—ﬁ + bi= = x this proves the required convexity.

We note that the maximum of any collection of convex functions is again
convex. The proof is completed by representing log F'(p), where F'(p) is the
norm of 7" from L, to L,, as the supremum of a bunch of functions that are
convex in x = ]l).

1T

pp — Sup | Q(Tf)dM

[Ifllp<1
llgllg<1

— s | / (90)(T(f9))du)

[Ifllp<1,f=0,|¢[=1
llgllg<1,920,9|=1

= sup | /(QW)(T(fl_xd)))du\
£l <1,£>0,6]=1
llgll1<1,g>0,[¢|=1

= sup ‘/(gzwa(flz@)dM
ey i

ez=x

= sup sup |u(f,g,¢,,2)|
[1fI1<1,f>0,|¢|=1 Rez=x
llgll1<1,9>0,|9[=1

= sup My gp0()
1 fll1<1,£>0,]¢|=1
[lgll1<1,9>0,|¢|=1

O

In particular for the Hardy-Littlewood or Poisson maximal function the
L, bound is trivial and we now have a bound for the L, norm of the maximal
function in terms of the L, norm of the original function provided p > 1.

2.2 Weak type inequality.

We saw that for a convolution operator of the form

(Tf)(x) = /T f)k(z - y)dy (2.6)

to be bounded as an operator from L into itself we need k to be in L;. How-
ever for 1 < p < oo the operator can some times be bounded even if k is not
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in L. This is proved by establishing a bound from Ly to Ly and a weak type
inequality in L;. We can then use a combination of Marcinkiewicz interpo-
lation, Riesz-Thorin interpolation and duality to prove the boundedness of
T form L, — L, for 1 < p < oo0.

Theorem 2.3. If
k(n) = /emzk(z)dz

satisfies sup,, |%(n)| < C, then the convolution operator given by equation
(2.6) is bounded by C as an operator from L to Ly.

Proof. Use the the orthonormal basis e, (z) = \/%e*im to diagonalize T
Ten(x) = k(n)e,(x) (2.7)
U

We now proceed to establish weak type (1, 1) estimate. We shall assume
that we have a kernel k£ in L; that satisfies

1.
sup | /k(y)ei”ydm =(C) < (2.8)

sup/ |k(x —y) — k(z)|de = Cy < 00 (2.9)
z:lz—y|>2|y|

Y
Here |x —y| in T is the length of the shorter arc connecting = and y in
T. In particular |z —y| < 7 for all z,y € T.

Although we have assumed that k is in L; we will prove a weak type (1,1)
bound that depends only on C and Cs.

Theorem 2.4. The operator of convolution by k

™

<nnu»:/‘Mw—wﬂw@ (2.10)

—T

satisfies the weak type inequality (1,1)

ple+ (@) @) = 0 < SUF (2.11)

with a constant C' that depends only on Cy and Cs.
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Proof. Proof involves several steps.

e First we observe that the Hardy-Littlewood maximal function given by
(1.16) satisfies the estimate (1.17). The set G =[x : M;(z) > (] is an

31 /1l
l

open set in T and has Lebesgue measure at most . We assume

that ¢ > % so that B = G is nonempty. We write the open set GG
as a possible countable union of disjoint open intervals /; of length r;
centered at x;. Note that the end points are not in G' and that implies
that at all the end points x; + $r;, My(z; £ ;) < ¢. The maximal
inequality assures us that

3|/
DTS
- l
e Let us define the averages

1
= / £(9)dy

and write f in the form

J

fla) = [f@)1s@) + 3 myly (@) + (@) = mL, ()
= gla) + 3 hy(x)

e We have the bounds

1 1
jmy| < —/ F()ldy < —/ F()ldy

1)

<
) <ot

1
<2 [ 15wy < 20500, +
T’j I

Here I ; is the interval centered around z; & % of length 27; which covers
I;. In particular ||g|l« < 2¢. On the other hand since {/;} are disjoint
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Sl =3 [ 1#) = mitdy <23 [ 1y < 201,

We therefore have
lglls < 3|l fllx

Note that the decomposition depends on ¢. Let us write the corre-
sponding sum
u:ka:Tkg—i-ZTkhj :v—l—ij =v+w
J J

e We estimate the Ly norm of v and the L; norm of w on large enough

set. Then use Tchebychev’s inequality.

¢ oll3 _ Cillglls _ 2¢Cillglly _ 6Chllf ]l
: > -1 < < < =
o o(o)] 2 5] < ot < IR < 2 !
Let us denote by fj the interval centered around z; of length 3r; and
by U = U;1;. We begin by estimating ||w.1ye|;.

1S /Z|/1 k(z —y)[f(y) — m;ldy|dx
B / : Z | / b —y) = k(@ = 2)][f (y) — my)dy|da
/CZ/ |k(x —y) = k(z — ;)| f(y) — my|dyda

J J
<G Y [ 1) = mlay

<2Cy||flh
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We have used here two facts. f(y) —m; has mean zero on [; . If y € I;
and x € If, then |y — x| > 7; > 2|y — 2;|. On the other hand

7 9|/ ]
pU) <Y u(ly) <3) ully) 23;% <=

e Finally we can put the pieces together.

ple : u(@)| = 20 < ple - |o(@)] = 6 + pla: Jw(z)] =€)

6C [ flln . 9 fllh . 2C3||f]
<
S— Yy Tyt

or

(12C, + 18 +4CH)|IfIl. ~ ClIfllx

pl s u(z)] =€)

IN

14 14
O

There is one point that we should note. For the interval doubling con-
struction on the circle we should be sure that we do not see for instance
s

any interval of lenghth larger than 7 in G. This can be ensured if we take

> %. The inequality is however satisfied for all ¢ because we can assume

C > 12.
We want to look at the special kernel k(y) = i which is not in L;. We

consider its truncation .

ks(y) = Ql{mza}(y)

Theorem 2.5. Convolution by the kernel % is a bounded operator from Lp —
L, for1 <p < o0.

We truncate it and consider

Lif |x] >4
ks(z) =4 =
o() {0 if |2 > 6

First we estimate the Fourier transform
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ey T sinny
[ Say=l [ Ty
lyl>s Y 5 Y

:2\/ Smydylgél sup ]/ Smydy\ <
nd 0

Yy 0<a<oo Yy

Next in order to verify the condition (2.9) we need to estimate the fol-
lowing quantity uniformly in y and 9.

/ |ks(x —y) — ks(x)|dx
x|z —y|>2[y|

There are three sets over which the integral does not vanish.

F={z:|z—y[>20y|,Jz —y| > |z] > 0}
Fy={z:|z—y[>2ly|lz—y| <4 |z] = 0}
Fy={z:|z—y[>2ly| |z —y| =0 |z] < 0}

We consider

1 1 1 1
IR T e
Uy T wle—yl>2y LY T

1 1
S/ | — —ldz
|271|22 Zz — ]_ z

It is clear that F, C [—20,24]. Therefore
1 *d
Fy ‘x’ s T

Finally F3 C [z : |z — y| < 20] and works similarly. With Cy = C3 + 2Cy we
have an estimate that is uniform in § and we are are done.
We are now ready to prove

Theorem 2.6. For any f € L, the partial sums sy(f,x) converge to f in
L, provided 1 < p < o0.
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Proof. We need only prove, for 1 < p < oo, a bound from L, to L,, for the
partial sum operators

(T f)(z) = / f( — y)kn(y)dy

with
1 sin(N + 1)z

21 sin %

]fN(Z)

that is uniform in N. We are looking for a uniform L, bound for the operators
defined by convolution with a kernel whose Fourier transform is

~

kn(n) = L{nj<ny(n)

This can be reduced to proving the boundedness of a single operator the
Hilbert transform S which in terms of Fourier transform multiplication by
signum n given by

1 if n>0
h(n) =< -1 ifn<0
0 ifn=20

We need the projection operator Pf = % f f(z)dz onto constants acting on
Fourier transforms as multiplication by

(n) 1 ifn=0
n:
Xo 0 ifn+£0

Finally M, is the operator of multiplication of a function by e*? or acting on
Fourier transforms as shift operator (Mya)(n) = a(n+ k). And the operator

Ty is multiplication by

(n) 1if |n|] < N
T™~(n) =
o 0if [n| > N

LMl x00) — LV s x0lm) = (o
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The operator My are uniformly bounded by 1 in every L, space. It is there-
fore sufficient to show thatthe Hilbert transform is bounded fromZ, — L,
for 1 < p < oco. Its kernel is

s(z) = - cot %

This can be replaced by the modified kernel

and we are done. O

2.3 Exercises.

1. In theorem 2.1 instead of taking a = ¢ take a = kfobtain the constant
C explicitly and optimize over k

2. Consider multiplication of the Fourier transform by a sequence a(n)
that is real monotone and satisfies lim,_,_., = 0,lim,,_,, = 1. Does
there exist a kernel A(z) that corresponds to it? Does it define a
bounded operator from L, — L, 7



