
Chapter 2

Singular Integrals.

2.1 Marcinkiewicz Interpolation Theorem.

Interpolation theorems play a very important role in Harmonic Analysis.
An example is the following theorem. Let (X,Σ, µ) be a measure space.
µ need not be a finite measure. A bounded map T : Lp → Lp satisfies
∥Tf∥p ≤ C∥f∥p for some C < ∞. By Tchebychev’s inequality

µ[x : |Tf | ≥ ℓ] ≤
∥Tf∥pP
ℓp

≤
Cp∥f∥pp
ℓp

This type of inequality, known as weak type inequality can hold even when
T is not bounded.

Theorem 2.1 (Marcinkiewicz). Let T be a sublinear map defiened on Lp∩Lq

that satisfies weak type inequlities

µ[x : (Tf)(x)| ≥ ℓ] ≤
Ci∥f∥pipi
ℓpi

(2.1)

for i = 1, 2 where 1 ≤ p1 < p2 < ∞. Then for p1 < p < p2, there are
constants Cp such that

∥Tf∥p ≤ Cp∥f∥p (2.2)

Note that T need not be linear. It need only satisfy for each x

|(T (f + g))(x)| ≤ |(Tf)(x)|+ |(Tg)(x)| (2.3)

15
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Proof. Let p ∈ (p1, p2) be fixed. For any function f ∈ Lp and for any positive
number a we deine fa = fχ{|f |≤a} and fa = fχ{|f |>a}. Clearly fa ∈ Lp2 and
fa ∈ Lp1

µ[x : |(Tf)(x)| ≥ ℓ]

≤ µ[x : |(Tfa)(x)| ≥
ℓ

2
] + µ[x : |(Tfa)(x)| ≥

ℓ

2
]

≤
C22p2

ℓp2

∫

|f(x)|≤a

|f(x)|p2dµ+
C12p1

ℓp1

∫

|f(x)|>a

|f(x)|p1dµ

Choose a = ℓ. Multiply by pℓp−1 and integrate over [0,∞). Denote by σ(dτ)
the distribution of τ = |f(z)|.

∥Tf∥pp =

∫ ∞

0

p ℓp−1µ[z : |(Tf)(z)| ≥ ℓ]dℓ

≤

∫ ∞

0

C22p2p ℓp−1

ℓp2

∫

|f(z)|≤ℓ
|f(x)|p2dµ dℓ

+

∫ ∞

0

C12p1p ℓp−1

ℓp1

∫

|f(z)|>ℓ
|f(x)|p1dµ dℓ

=

∫ ∞

0

C22p2p ℓp−1

ℓp2

∫

τ≤ℓ
τ p2 σ(dτ) dℓ

+

∫ ∞

0

C12p1p ℓp−1

ℓp1

∫

τ>ℓ

τ p1σ(dτ) dℓ

=

∫
τ p2

∫ ∞

τ

C22p2p ℓp−1

ℓp2
dℓ σ(dτ)

+

∫
τ p1

∫ τ

0

C12p1p ℓp−1

ℓp1
dℓ σ(dτ)

= C(p1, p2, p, C1, C2)

∫
τ pσ(dτ)

There is a slight variation of the argument that allows p2 to be infinite
provided T is bounded on L∞. If we assume the bound ∥(Tf)∥∞ ≤ C2∥f∥∞
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we obtain the estimate

µ[x : |Tf(x)| ≥ (1 + C2)ℓ] ≤ µ[x : |Tf ℓ(x)| ≥ C2ℓ] + µ[x : |Tfℓ(x)| ≥ ℓ]

= µ[x : |Tf ℓ(x)| ≥ ℓ]

≤
C1

ℓp1

∫

|f(x)|≥ℓ
|f ℓ(x)|p1dµ

=
C1

ℓp1

∫ ∞

ℓ

τ p1σ(dτ)

multiply by pℓp−1 and integrate as before.

A different interpolation theorem for linear maps T is the following

Theorem 2.2 (Riesz-Thorin). If a linear map T is bounded from Lpi into
Lpi with a bound Ci for i = 1, 2 then for p1 ≤ p ≤ p2 it is bounded from Lp

into Lp with a bound Cp that can be taken to be

Cp = Ct
1C

1−t
2 (2.4)

where t is determined by

1

p
=

t

p1
+

1− t

p2
(2.5)

Proof. The proof uses methods from the theory of functions of a complex
variable. The starting point is the maximum modulus principle. Let us
assume that u(z) is analytic in the open strip a < Re z < b and bounded
and continuous in the closed strip a ≤ Re z ≤ b. Let M(x) be the maximum
modulus of the function on the line Re z = x. Then logM(x) is a convex
function of x. This is not hard to see. Clearly the maximum principle dictates
that

M(x) ≤ max[M(a),M(b)]

If one is worried about the maximum being attained, one can always mutiply
by eϵz

2

and let ϵ go to 0. Replacing u(z) by u(z)etz yields the inequality

M(x)etx ≤ max[M(a)eat,M(b)ebt]

Pick t so that M(a)eat = M(b)ebt, i.e t = 1
b−a

log M(a)
M(b) . We get

M(x) ≤ M(a)
b−x
b−aM(b)

x−a
b−a
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Since a b−x
b−a

+ bx−a
b−x

= x this proves the required convexity.
We note that the maximum of any collection of convex functions is again

convex. The proof is completed by representing logF (p), where F (p) is the
norm of T from Lp to Lp, as the supremum of a bunch of functions that are
convex in x = 1

p
.

∥T∥p,p = sup
∥f∥p≤1

∥g∥q≤1

|

∫
g(Tf)dµ|

= sup
∥f∥p≤1,f≥0,|φ|=1

∥g∥q≤1,g≥0,|ψ|=1

|

∫
(gψ)(T (fφ))dµ|

= sup
∥f∥1≤1,f>0,|φ|=1

∥g∥1≤1,g>0,|ψ|=1

|

∫
(gxψ)(T (f 1−xφ))dµ|

= sup
∥f∥1≤1,f>0,|φ|=1

∥g∥1≤1,g>0,|ψ|=1

Rez=x

|

∫
(gzψ)(T (f 1−zφ))dµ|

= sup
∥f∥1≤1,f>0,|φ|=1

∥g∥1≤1,g>0,|ψ|=1

sup
Rez=x

|u(f, g,φ,ψ, z)|

= sup
∥f∥1≤1,f>0,|φ|=1

∥g∥1≤1,g>0,|ψ|=1

Mf,g,φ,ψ(x)

In particular for the Hardy-Littlewood or Poisson maximal function the
L∞ bound is trivial and we now have a bound for the Lp norm of the maximal
function in terms of the Lp norm of the original function provided p > 1.

2.2 Weak type inequality.

We saw that for a convolution operator of the form

(Tf)(x) =

∫

T

f(y)k(x− y)dy (2.6)

to be bounded as an operator from L1 into itself we need k to be in L1. How-
ever for 1 < p < ∞ the operator can some times be bounded even if k is not
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in L1. This is proved by establishing a bound from L2 to L2 and a weak type
inequality in L1. We can then use a combination of Marcinkiewicz interpo-
lation, Riesz-Thorin interpolation and duality to prove the boundedness of
T form Lp → Lp for 1 < p < ∞.

Theorem 2.3. If

k̂(n) =

∫
einzk(z)dz

satisfies supn |k̂(n)| ≤ C, then the convolution operator given by equation
(2.6) is bounded by C as an operator from L2 to L2.

Proof. Use the the orthonormal basis en(x) =
1√
2π
e−inx to diagonalize T

Ten(x) = k̂(n)en(x) (2.7)

We now proceed to establish weak type (1, 1) estimate. We shall assume
that we have a kernel k in L1 that satisfies

1.

sup
n

|

∫
k(y)einydy| = C1 < ∞ (2.8)

2.

sup
y

∫

x:|x−y|>2|y|
|k(x− y)− k(x)|dx = C2 < ∞ (2.9)

Here |x− y| in T is the length of the shorter arc connecting x and y in
T. In particular |x− y| ≤ π for all x, y ∈ T.

Although we have assumed that k is in L1 we will prove a weak type (1, 1)
bound that depends only on C1 and C2.

Theorem 2.4. The operator of convolution by k

(Tkf)(x) =

∫ π

−π
k(x− y)f(y)dy (2.10)

satisfies the weak type inequality (1,1)

µ[x : |(Tkf)(x)| ≥ ℓ] ≤
C

ℓ
∥f∥1 (2.11)

with a constant C that depends only on C1 and C2.
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Proof. Proof involves several steps.

• First we observe that the Hardy-Littlewood maximal function given by
(1.16) satisfies the estimate (1.17). The set G = [x : Mf (x) > ℓ] is an

open set in T and has Lebesgue measure at most 3∥f∥1
ℓ

. We assume

that ℓ > 3∥f∥1
2π so that B = Gc is nonempty. We write the open set G

as a possible countable union of disjoint open intervals Ij of length rj
centered at xj . Note that the end points are not in G and that implies
that at all the end points xj ±

1
2rj, Mf (xj ± rj) ≤ ℓ. The maximal

inequality assures us that

∑

j

rj ≤
3∥f∥1
ℓ

• Let us define the averages

mj =
1

rj

∫

Ij

f(y)dy

and write f in the form

f(x) = [f(x)1B(x) +
∑

j

mj1Ij(x)] +
∑

j

[f(x)−mj ]1Ij(x)

= g(x) +
∑

j

hj(x)

• We have the bounds

|mj | ≤
1

rj

∫

Ij

|f(y)|dy ≤
1

rj

∫

Ĩj

|f(y)|dy

≤ 2
1

2rj

∫

Ĩj

|f(y)|dy ≤ 2Mf(xj ±
rj
2
) ≤ 2ℓ

Here Ĩj is the interval centered around xj±
rj
2 of length 2rj which covers

Ij. In particular ∥g∥∞ ≤ 2ℓ. On the other hand since {Ij} are disjoint
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∑

j

∥hj∥1 =
∑

j

∫

Ij

|f(y)−mj |dy ≤ 2
∑

j

∫

Ij

|f(y)|dy ≤ 2∥f∥1

We therefore have
∥g∥1 ≤ 3∥f∥1

Note that the decomposition depends on ℓ. Let us write the corre-
sponding sum

u = Tkf = Tkg +
∑

j

Tkhj = v +
∑

j

wj = v + w

• We estimate the L2 norm of v and the L1 norm of w on large enough
set. Then use Tchebychev’s inequality.

µ[x : |v(x)| ≥
ℓ

2
] ≤

∥v∥22
ℓ2

≤
C1∥g∥22
ℓ2

≤
2ℓC1∥g∥1

ℓ2
=

6C1∥f∥1
ℓ

Let us denote by Îj the interval centered around xj of length 3rj and
by U = ∪j Îj . We begin by estimating ∥w.1Uc∥1.

∥w.1Uc∥1 ≤

∫

Uc

∑

j

|

∫

Ij

k(x− y)[f(y)−mj ]dy|dx

=

∫

Uc

∑

j

|

∫

Ij

[k(x− y)− k(x− xj)][f(y)−mj ]dy|dx

≤

∫

Uc

∑

j

∫

Ij

|k(x− y)− k(x− xj)||f(y)−mj |dydx

=
∑

j

∫

Ij

|f(y)−mj |dy

∫

Uc

|k(x− y)− k(x− xj)|dx

≤
∑

j

∫

Ij

|f(y)−mj |dy

∫

Îcj

|k(x− y)− k(x− xj)|dx

≤
∑

j

∫

Ij

|f(y)−mj |dy

∫

x:|x−y|≥2|y−xj|
|k(x− y)− k(x− xj)|dx

≤ C2

∑

j

∫

Ij

|f(y)−mj |dy

≤ 2C2∥f∥1
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We have used here two facts. f(y)−mj has mean zero on Ij . If y ∈ Ij
and x ∈ Ĩcj , then |y − x| ≥ rj ≥ 2|y − xj |. On the other hand

µ(U) ≤
∑

µ(Ĩj) ≤ 3
∑

µ(Ij) = 3
∑

j

rj ≤
9∥f∥1
ℓ

• Finally we can put the pieces together.

µ(x : |u(x)| ≥ 2ℓ) ≤ µ(x : |v(x)| ≥ ℓ) + µ(x : |w(x)| ≥ ℓ)

≤
6C1∥f∥1

ℓ
+

9∥f∥1
ℓ

+
2C2∥f∥1

ℓ

or

µ(x : |u(x)| ≥ ℓ) ≤
(12C1 + 18 + 4C2)∥f∥1

ℓ
=

C∥f∥1
ℓ

There is one point that we should note. For the interval doubling con-
struction on the circle we should be sure that we do not see for instance
any interval of lenghth larger than π

2 in G. This can be ensured if we take

ℓ > 6∥f∥1
π

. The inequality is however satisfied for all ℓ because we can assume
C ≥ 12.

We want to look at the special kernel k(y) = 1
y
which is not in L1. We

consider its truncation

kδ(y) =
1

y
1{|y|≥δ}(y)

Theorem 2.5. Convolution by the kernel 1
x
is a bounded operator from Lp →

Lp for 1 < p < ∞.

We truncate it and consider

kδ(x) =

{
1
x
if |x| ≥ δ

0 if |x| > δ

First we estimate the Fourier transform



2.2. WEAK TYPE INEQUALITY. 23

|

∫

|y|≥δ

einy

y
dy| = 2|

∫ π

δ

sinny

y
dy|

= 2|

∫ nπ

nδ

sin y

y
dy| ≤ 4 sup

0<a<∞
|

∫ a

0

sin y

y
dy| ≤ C1

Next in order to verify the condition (2.9) we need to estimate the fol-
lowing quantity uniformly in y and δ.

∫

x:|x−y|>2|y|
|kδ(x− y)− kδ(x)|dx

There are three sets over which the integral does not vanish.

F1 = {x : |x− y| > 2|y|, |x− y| ≥ δ, |x| ≥ δ}

F2 = {x : |x− y| > 2|y|, |x− y| ≤ δ, |x| ≥ δ}

F3 = {x : |x− y| > 2|y|, |x− y| ≥ δ, |x| ≤ δ}

We consider

∫

F1

|
1

x− y
−

1

x
|dx ≤

∫

x:|x−y|≥2|y|
|

1

x− y
−

1

x
|dx

≤

∫

|z−1|≥2

|
1

z − 1
−

1

z
|dz

= C3

It is clear that F2 ⊂ [−2δ, 2δ]. Therefore

∫

F2

1

|x|
dx ≤ 2

∫ 2δ

δ

dx

x
= C4

Finally F3 ⊂ [x : |x− y| ≤ 2δ] and works similarly. With C2 = C3 + 2C4 we
have an estimate that is uniform in δ and we are are done.

We are now ready to prove

Theorem 2.6. For any f ∈ Lp the partial sums sN (f, x) converge to f in
Lp provided 1 < p < ∞.
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Proof. We need only prove, for 1 < p < ∞, a bound from Lp to Lp, for the
partial sum operators

(TNf)(x) =

∫
f(x− y)kN(y)dy

with

kN(z) =
1

2π

sin(N + 1
2)z

sin z
2

that is uniform in N . We are looking for a uniform Lp bound for the operators
defined by convolution with a kernel whose Fourier transform is

k̂N(n) = 1{|n|≤N}(n)

This can be reduced to proving the boundedness of a single operator the
Hilbert transform S which in terms of Fourier transform multiplication by
signum n given by

h(n) =

⎧
⎪⎨

⎪⎩

1 if n > 0

−1 if n < 0

0 if n = 0

We need the projection operator Pf = 1
2π

∫
f(x)dx onto constants acting on

Fourier transforms as multiplication by

χ0(n) =

{
1 if n = 0

0 if n ≠ 0

Finally Mk is the operator of multiplication of a function by eikx or acting on
Fourier transforms as shift operator (Mka)(n) = a(n+ k). And the operator
TN is multiplication by

τN (n) =

{
1 if |n| ≤ N

0 if |n| > N

1

2
[M−N(h + χ0)](n)−

1

2
[M−N−1(h + χ0)](n) = τN(n)
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The operator MN are uniformly bounded by 1 in every Lp space. It is there-
fore sufficient to show thatthe Hilbert transform is bounded fromLp → Lp

for 1 < p < ∞. Its kernel is

s(z) =
1

2π
cot

z

2

This can be replaced by the modified kernel

k(z) =
1

πz

and we are done.

2.3 Exercises.

1. In theorem 2.1 instead of taking a = ℓ take a = kℓobtain the constant
C explicitly and optimize over k

2. Consider multiplication of the Fourier transform by a sequence a(n)
that is real monotone and satisfies limn→−∞ = 0, limn→∞ = 1. Does
there exist a kernel A(x) that corresponds to it? Does it define a
bounded operator from Lp → Lp ?


